Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 10: 1150996, 2023.
Article in English | MEDLINE | ID: mdl-37255997

ABSTRACT

Introduction: Suckling lamb meat is highly appreciated in European Mediterranean countries because of its mild flavor and soft texture. In suckling lamb carcasses, perirenal and pelvic fat depots account for a large fraction of carcass fat accumulation, and their proportions are used as an indicator of carcass quality. Material and Methods: This study aimed to characterize the genetic mechanisms that regulate fat deposition in suckling lambs by evaluating the transcriptomic differences between Spanish Assaf lambs with significantly different proportions of kidney knob and channel fat (KKCF) depots in their carcasses (4 High-KKCF lambs vs. 4 Low-KKCF lambs). Results: The analyzed fat tissue showed overall dominant expression of white adipose tissue gene markers, although due to the young age of the animals (17-36 days), the expression of some brown adipose tissue gene markers (e.g., UCP1, CIDEA) was still identified. The transcriptomic comparison between the High-KKCF and Low-KKCF groups revealed a total of 80 differentially expressed genes (DEGs). The enrichment analysis of the 49 DEGs with increased expression levels in the Low-KKCF lambs identified significant terms linked to the biosynthesis of lipids and thermogenesis, which may be related to the higher expression of the UCP1 gene in this group. In contrast, the enrichment analysis of the 31 DEGs with increased expression in the High-KKCF lambs highlighted angiogenesis as a key biological process supported by the higher expression of some genes, such as VEGF-A and THBS1, which encode a major angiogenic factor and a large adhesive extracellular matrix glycoprotein, respectively. Discussion: The increased expression of sestrins, which are negative regulators of the mTOR complex, suggests that the preadipocyte differentiation stage is being inhibited in the High-KKCF group in favor of adipose tissue expansion, in which vasculogenesis is an essential process. All of these results suggest that the fat depots of the High-KKCF animals are in a later stage of development than those of the Low-KKCF lambs. Further genomic studies based on larger sample sizes and complementary analyses, such as the identification of polymorphisms in the DEGs, should be designed to confirm these results and achieve a deeper understanding of the genetic mechanisms underlying fat deposition in suckling lambs.

2.
Res Vet Sci ; 159: 57-65, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37084523

ABSTRACT

This study evaluated the influence of a temporary nutritional protein restriction (NPR) performed, under commercial conditions, in prepubertal female lambs on first lactation milk production traits and the inflammatory response triggered by an inflammatory challenge of the. From 40 Assaf female lambs, we defined a control group (Cn = 20), which received a standard diet for replacement lambs and the NPR group (n = 20), which received the same diet but without soybean meal between 3 and 5 months of age. About 150 days after lambing, 24 of these ewes (13 NPR, 11C) were subjected to an intramammary infusion of E. coli lipopolysaccharide (LPS). Our dynamic study identified indicator traits of local (SCC) and systemic (rectal Ta, IL-6, CXCL8, IL-10, IL-36RA, VEGF-A) response to the LPS challenge. The NPR did not show significant effects on milk production traits and did not affect the SCC and rectal Ta after the LPS challenge. However, the NPR had a significant influence on 8 of the 14 plasma biomarkers analysed, in all the cases with higher relative values in the C group. The effects observed on VEGF-A (involved in vasculogenesis during mammary gland development and vascular permeability) and IL-10 (a regulatory cytokine classically known by its anti-inflammatory action) are the most remarkable to explain the differences found between groups. Whereas further studies should be undertaken to confirm these results, our findings are of interest considering the current concern about the future world's demand for protein and the need for animal production systems to evolve toward sustainability.


Subject(s)
Interleukin-10 , Milk , Animals , Sheep , Female , Milk/metabolism , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Escherichia coli , Vascular Endothelial Growth Factor A/metabolism , Lactation/physiology , Sheep, Domestic , Dietary Proteins/metabolism
3.
Front Vet Sci ; 10: 1122953, 2023.
Article in English | MEDLINE | ID: mdl-37077950

ABSTRACT

Introduction: As higher feed efficiency in dairy ruminants means a higher capability to transform feed nutrients into milk and milk components, differences in feed efficiency are expected to be partly linked to changes in the physiology of the mammary glands. Therefore, this study aimed to determine the biological functions and key regulatory genes associated with feed efficiency in dairy sheep using the milk somatic cell transcriptome. Material and methods: RNA-Seq data from high (H-FE, n = 8) and low (L-FE, n = 8) feed efficiency ewes were compared through differential expression analysis (DEA) and sparse Partial Least Square-Discriminant analysis (sPLS-DA). Results: In the DEA, 79 genes were identified as differentially expressed between both conditions, while the sPLS-DA identified 261 predictive genes [variable importance in projection (VIP) > 2] that discriminated H-FE and L-FE sheep. Discussion: The DEA between sheep with divergent feed efficiency allowed the identification of genes associated with the immune system and stress in L-FE animals. In addition, the sPLS-DA approach revealed the importance of genes involved in cell division (e.g., KIF4A and PRC1) and cellular lipid metabolic process (e.g., LPL, SCD, GPAM, and ACOX3) for the H-FE sheep in the lactating mammary gland transcriptome. A set of discriminant genes, commonly identified by the two statistical approaches, was also detected, including some involved in cell proliferation (e.g., SESN2, KIF20A, or TOP2A) or encoding heat-shock proteins (HSPB1). These results provide novel insights into the biological basis of feed efficiency in dairy sheep, highlighting the informative potential of the mammary gland transcriptome as a target tissue and revealing the usefulness of combining univariate and multivariate analysis approaches to elucidate the molecular mechanisms controlling complex traits.

4.
Sci Rep ; 13(1): 4351, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928446

ABSTRACT

In sheep, nutrition during the prepubertal stage is essential for growth performance and mammary gland development. However, the potential effects of nutrient restriction in a prepuberal stage over the progeny still need to be better understood. Here, the intergenerational effect of maternal protein restriction at prepubertal age (2 months of age) on methylation patterns was evaluated in the perirenal fat of Assaf suckling lambs. In total, 17 lambs from ewes subjected to dietary protein restriction (NPR group, 44% less protein) and 17 lambs from control ewes (C group) were analyzed. These lambs were ranked based on their carcass proportion of perirenal and cavitary fat and classified into HighPCF and LowPCF groups. The perirenal tissue from 4 NPR-LowPCF, 4 NPR-HighPCF, 4 C-LowPCF, and 4 C-HighPCF lambs was subjected to whole-genome bisulfite sequencing and differentially methylated regions (DMRs) were identified. Among other relevant processes, these DMRs were mapped in genes responsible for regulating the transition of brown to white adipose tissue and nonshivering thermoregulation, which might be associated with better adaptation/survival of lambs in the perinatal stage. The current study provides important biological insights about the intergenerational effect on the methylation pattern of an NPR in replacement ewes.


Subject(s)
Diet, Protein-Restricted , Parturition , Pregnancy , Animals , Sheep , Female , Body Temperature Regulation , Nutritional Status , Epigenesis, Genetic
5.
Front Genet ; 13: 1035063, 2022.
Article in English | MEDLINE | ID: mdl-36386829

ABSTRACT

In sheep, differences were observed regarding fat accumulation and fatty acid (FA) composition between males and females, which may impact the quality and organoleptic characteristics of the meat. The integration of different omics technologies is a relevant approach for investigating biological and genetic mechanisms associated with complex traits. Here, the perirenal tissue of six male and six female Assaf suckling lambs was evaluated using RNA sequencing and whole-genome bisulfite sequencing (WGBS). A multiomic discriminant analysis using multiblock (s)PLS-DA allowed the identification of 314 genes and 627 differentially methylated regions (within these genes), which perfectly discriminate between males and females. These candidate genes overlapped with previously reported QTLs for carcass fat volume and percentage of different FAs in milk and meat from sheep. Additionally, differentially coexpressed (DcoExp) modules of genes between males (nine) and females (three) were identified that harbour 22 of these selected genes. Interestingly, these DcoExp were significantly correlated with fat percentage in different deposits (renal, pelvic, subcutaneous and intramuscular) and were associated with relevant biological processes for adipogenesis, adipocyte differentiation, fat volume and FA composition. Consequently, these genes may potentially impact adiposity and meat quality traits in a sex-specific manner, such as juiciness, tenderness and flavour.

6.
Sci Rep ; 12(1): 17620, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271016

ABSTRACT

Gastrointestinal nematodes (GIN) are a major threat to health and welfare in small ruminants worldwide. Teladorsagia circumcincta is a nematode that inhabits the abomasum of sheep, especially in temperate regions, causing important economic losses. Given that T. circumcincta and microbiome share the same niche, interactions between them and the host are expected. Although it is known that within a sheep breed there are animals that are more resistant than others to infection by GIN, it is not known if the microbiome influences the phenotype of these animals. Under this condition, 12 sheep were classified according to their cumulative faecal egg count (cFEC) at the end of a first experimental infection, 6 as resistant group (RG) and 6 as susceptible group (SG) to T. circumcincta infection. Then, all sheep were experimentally infected with 70,000 L3 of T. circumcincta and at day 7 days post-infection were euthanized. At necropsy, gastric mucosa and gastric content from abomasum were collected to extract bacterial DNA and sequence V3-V4 region from 16S rRNA gene using Ilumina technology. After bioanalysis performed, results showed that α-diversity and ß-diversity remained similar in both groups. However, resistant phenotype sheep showed a higher number of bacteria butyrate-fermenting species as Clostridium sensu stricto 1 (abundance in RG: 1.29% and in SG: 0.069%; p = 0.05), and Turicibacter (abundance in RG: 0.31% and in SG: 0.027%; p = 0.07) in gastric content but also Serratia spp in gastric mucosa (abundance in RG: 0.12% and in SG: 0.041%; p = 0.07). A trend towards a significant negative correlation between cFEC and Clostridium sensu stricto 1 abundance in gastric content was detected (r = - 0.537; p = 0.08). These data suggest that microbiome composition could be another factor associated with the development of the resistant phenotype modifying the interaction with the host and the in last instance affecting the individual risk of infection.


Subject(s)
Microbiota , Nematoda , Sheep Diseases , Sheep/genetics , Animals , RNA, Ribosomal, 16S/genetics , DNA, Bacterial , Sheep Diseases/genetics , Ostertagia , Nematoda/genetics , Feces , Disease Susceptibility , Butyrates
7.
Genet Sel Evol ; 54(1): 23, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303797

ABSTRACT

BACKGROUND: Single-step genomic best linear unbiased prediction (ssGBLUP) allows the inclusion of information from genotyped and ungenotyped individuals in a single analysis. This avoids the need to genotype all candidates with the potential benefit of reducing overall costs. The aim of this study was to assess the effect of genotyping strategies, the proportion of genotyped candidates and the genotyping criterion to rank candidates to be genotyped, when using ssGBLUP evaluation. A simulation study was carried out assuming selection over several discrete generations where a proportion of the candidates were genotyped and evaluation was done using ssGBLUP. The scenarios compared were: (i) three genotyping strategies defined by their protocol for choosing candidates to be genotyped (RANDOM: candidates were chosen at random; TOP: candidates with the best genotyping criterion were genotyped; and EXTREME: candidates with the best and worse criterion were genotyped); (ii) eight proportions of genotyped candidates (p); and (iii) two genotyping criteria to rank candidates to be genotyped (candidates' own phenotype or estimated breeding values). The criteria of the comparison were the cumulated gain and reliability of the genomic estimated breeding values (GEBV). RESULTS: The genotyping strategy with the greatest cumulated gain was TOP followed by RANDOM, with EXTREME behaving as RANDOM at low p and as TOP with high p. However, the reliability of GEBV was higher with RANDOM than with TOP. This disparity between the trend of the gain and the reliability is due to the TOP scheme genotyping the candidates with the greater chances of being selected. The extra gain obtained with TOP increases when the accuracy of the selection criterion to rank candidates to be genotyped increases. CONCLUSIONS: The best strategy to maximise genetic gain when only a proportion of the candidates are to be genotyped is TOP, since it prioritises the genotyping of candidates which are more likely to be selected. However, the strategy with the greatest GEBV reliability does not achieve the largest gain, thus reliability cannot be considered as an absolute and sufficient criterion for determining the scheme which maximises genetic gain.


Subject(s)
Genome , Genomics , Genotype , Phenotype , Reproducibility of Results
8.
Front Vet Sci ; 9: 1037764, 2022.
Article in English | MEDLINE | ID: mdl-36590804

ABSTRACT

Dietary supplementation with marine lipids modulates ruminant milk composition toward a healthier fatty acid profile for consumers, but it also causes milk fat depression (MFD). Because the dairy goat industry is mainly oriented toward cheese manufacturing, MFD can elicit economic losses. There is large individual variation in animal susceptibility with goats more (RESPO+) or less (RESPO-) responsive to diet-induced MFD. Thus, we used RNA-Seq to examine gene expression profiles in mammary cells to elucidate mechanisms underlying MFD in goats and individual variation in the extent of diet-induced MFD. Differentially expression analyses (DEA) and weighted gene co-expression network analysis (WGCNA) of RNA-Seq data were used to study milk somatic cell transcriptome changes in goats consuming a diet supplemented with marine lipids. There were 45 differentially expressed genes (DEGs) between control (no-MFD, before diet-induced MFD) and MFD, and 18 between RESPO+ and RESPO-. Biological processes and pathways such as "RNA transcription" and "Chromatin modifying enzymes" were downregulated in MFD compared with controls. Regarding susceptibility to diet-induced MFD, we identified the "Triglyceride Biosynthesis" pathway upregulated in RESPO- goats. The WGCNA approach identified 9 significant functional modules related to milk fat production and one module to the fat yield decrease in diet-induced MFD. The onset of MFD in dairy goats is influenced by the downregulation of SREBF1, other transcription factors and chromatin-modifying enzymes. A list of DEGs between RESPO+ and RESPO- goats (e.g., DBI and GPD1), and a co-related gene network linked to the decrease in milk fat (ABCD3, FABP3, and PLIN2) was uncovered. Results suggest that alterations in fatty acid transport may play an important role in determining individual variation. These candidate genes should be further investigated.

9.
Front Genet ; 12: 685341, 2021.
Article in English | MEDLINE | ID: mdl-34194481

ABSTRACT

Several recent studies have demonstrated the role of long non-coding RNAs (lncRNAs) in regulating the defense mechanism against parasite infections, but no studies are available that investigated their relevance for immune response to nematode infection in sheep. Thus, the aim of the current study was to (i) detect putative lncRNAs that are expressed in the abomasal lymph node of adult sheep after an experimental infection with the gastrointestinal nematode (GIN) Teladorsagia circumcincta and (ii) to elucidate their potential functional role associated with the differential host immune response. We hypothesized that putative lncRNAs differentially expressed (DE) between samples from animals that differ in resistance to infection may play a significant regulatory role in response to nematode infection in adult sheep. To obtain further support for our hypothesis, we performed co-expression and functional gene enrichment analyses with the differentially expressed lncRNAs (DE lncRNAs). In a conservative approach, we included for this predictive analysis only those lncRNAs that are confirmed and supported by documentation of expression in gastrointestinal tissues in the current sheep gene atlas. We identified 9,105 putative lncRNA transcripts corresponding to 7,124 gene loci. Of these, 457 were differentially expressed lncRNA loci (DELs) with 683 lncRNA transcripts. Based on a gene co-expression analysis via weighted gene co-expression network analysis, 12 gene network modules (GNMs) were found significantly correlated with at least one of 10 selected target DE lncRNAs. Based on the principle of "guilt-by-association," the DE genes from each of the three most significantly correlated GNMs were subjected to a gene enrichment analysis. The significant pathways associated with DE lncRNAs included ERK5 Signaling, SAPK/JNK Signaling, RhoGDI Signaling, EIF2 Signaling, Regulation of eIF4 and p70S6K Signaling and Oxidative Phosphorylation pathways. They belong to signaling pathway categories like Cellular Growth, Proliferation and Development, Cellular Stress and Injury, Intracellular and Second Messenger Signaling and Apoptosis. Overall, this lncRNA study conducted in adult sheep after GIN infection provided first insights into the potential functional role of lncRNAs in the differential host response to nematode infection.

10.
Animals (Basel) ; 11(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466430

ABSTRACT

Transitioning from traditional to new genotyping technologies requires the development of bridging methodologies to avoid extra genotyping costs. This study aims to identify the optimum number of single nucleotide polymorphisms (SNPs) necessary to accurately impute microsatellite markers to develop a low-density SNP chip for parentage verification in the Assaf sheep breed. The accuracy of microsatellite marker imputation was assessed with three metrics: genotype concordance (C), genotype dosage (length r2), and allelic dosage (allelic r2), for all imputation scenarios tested (0.5-10 Mb microsatellite flanking SNP windows). The imputation accuracy for the three metrics analyzed for all haplotype lengths tested was higher than 0.90 (C), 0.80 (length r2), and 0.75 (allelic r2), indicating strong genotype concordance. The window with 2 Mb length provides the best accuracy for the imputation procedure and the design of an affordable low-density SNP chip for parentage testing. We additionally evaluated imputation performance under two null models, naive (imputing the most common allele) and random (imputing by randomly selecting the allele), which in comparison showed weak genotype concordances (0.41 and 0.15, respectively). Therefore, we describe a precise methodology in the present article to impute multiallelic microsatellite genotypes from a low-density SNP chip in sheep and solve the problem of parentage verification when different genotyping platforms have been used across generations.

11.
Parasitol Res ; 120(3): 1115-1120, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33179152

ABSTRACT

This study describes early immunological mechanisms that underlie resistance to Teladorsagia circumcincta infection in adult Churra sheep. After a first experimental infection, 6 animals were classified as resistant (RG) and 6 as susceptible (SG) to T. circumcincta infection based on their cumulative faecal egg count (cFEC) at the end of the infection. RG showed higher IgA levels against somatic antigen of T. circumcincta fourth-larvae stage (L4) in serum at day 3 post-infection (pi) (p < 0.05) and close to significance at day 21 pi (p = 0.06). Moreover, a strong negative correlation between cFEC and specific IgA was only significant in RG at day 3 pi (r = - 0.870; p < 0.05), but absent in SG. At the end of this infection, sheep were treated with moxidectin and infected again 3 weeks later to be slaughtered at day 7 pi. At necropsy, the specific IgA levels in gastric mucosa were similar between groups; the absence differences at day 7 pi could be due to a previous increase in the IgA response, probably around day 3 pi, as described during the first infection. L4 burden, 68% lower in RG than in SG, was influenced by the specific IgA in gastric mucus and the number of γδ T cells. RG group showed a positive correlation between γδ T cells and eosinophils (r = 0.900; p = 0.037); however, this correlation was not found in SG. These results show that these two phenotypes show different early immune response pattern to T. circumcincta infection in Churra sheep.


Subject(s)
Sheep Diseases/immunology , Sheep Diseases/parasitology , Trichostrongyloidea/immunology , Trichostrongyloidiasis/veterinary , Animals , Disease Resistance/genetics , Disease Resistance/immunology , Feces/parasitology , Female , Gastric Mucosa/immunology , Immunity , Immunoglobulin A/analysis , Immunoglobulin A/blood , Parasite Egg Count/veterinary , Sheep/classification , Sheep Diseases/genetics , Trichostrongyloidea/classification , Trichostrongyloidea/growth & development , Trichostrongyloidiasis/genetics , Trichostrongyloidiasis/immunology
12.
J Anim Sci ; 98(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33205213

ABSTRACT

Sheep milk is mainly intended to manufacture a wide variety of high-quality cheeses. The ovine cheese industry would benefit from an improvement, through genetic selection, of traits related to the milk coagulation properties (MCPs) and cheese yield-related traits, broadly denoted as "cheese-making traits." Considering that routine measurements of these traits needed for genetic selection are expensive and time-consuming, this study aimed to evaluate the accuracy of a cheese-making phenotype imputation method based on the information from official milk control records combined with the pH of the milk. For this study, we analyzed records of milk production traits, milk composition traits, and measurements of cheese-making traits available from a total of 1,145 dairy ewes of the Spanish Assaf sheep breed. Cheese-making traits included five related to the MCPs and two cheese yield-related traits. The milk and cheese-making phenotypes were adjusted for significant effects based on a general linear model. The adjusted phenotypes were used to define a multiple-phenotype imputation procedure for the cheese-making traits based on multivariate normality and Markov chain Monte Carlo sampling. Five of the seven cheese-making traits considered in this study achieved a prediction accuracy of 0.60 computed as the correlation between the adjusted phenotypes and the imputed phenotypes. Particularly the logarithm of curd-firming time since rennet addition (logK20) (0.68), which has been previously suggested as a potential candidate trait to improve the cheese ability in this breed, and the logarithm of the ratio between the rennet clotting time and the curd firmness at 60 min (logRCT/A60) (0.65), which has been defined by other studies as an indicator trait of milk coagulation efficiency. This study represents a first step toward the possible use of the phenotype imputation of cheese-making traits to develop a practical methodology for the dairy sheep industry to impute cheese-making traits only based on the analysis of a milk sample without the need of pedigree information. This information could be also used in future planning of specific breeding programs considering the importance of the cheese-making efficiency in dairy sheep and highlights the potential of phenotype imputation to leverage sample size on expensive, hard-to-measure phenotypes.


Subject(s)
Cheese , Animals , Dairying , Female , Gastrointestinal Contents , Milk , Phenotype , Sheep/genetics
13.
Animals (Basel) ; 10(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882861

ABSTRACT

Different studies have shown that polymorphisms in the sequence of genes coding for the milk proteins and milk fatty acids are associated with milk composition traits as well as with cheese-making traits. However, the lack of coincident results across sheep populations has prevented the use of this information in sheep breeding programs. The main objective of this study was to exploit the information derived from a total of 175 whole genome resequencing (WGR) datasets from 43 domestic sheep breeds and three wild sheep to evaluate the genetic diversity of 24 candidate genes for milk composition and identify genetic variants with a potential phenotypic effect. The functional annotation of the identified variants highlighted five single nucleotide polymorphisms (SNPs) predicted to have a high impact on the protein function and 42 missense SNPs with a putative deleterious effect. When comparing the allelic frequencies at these 47 polymorphisms with relevant functional effects between the genomes of Assaf and Churra sheep breeds, two missense deleterious variants were identified as potential markers associated to the milk composition differences found between the Churra and Assaf: XDH:92215727C>T and LALBA:137390760T>C. Future research is required to confirm the effect of the potential functionally relevant variants identified in the present study on milk composition and cheese-making traits.

14.
Animals (Basel) ; 10(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825408

ABSTRACT

Milk from healthy animals has classically been considered a sterile fluid. With the development of massively parallel sequencing and its application to the study of the microbiome of different body fluids, milk microbiota has been documented in several animal species. In this study, the main objective of this work was to access bacterial profiles of healthy milk samples using the next-generation sequencing of amplicons from the 16S rRNA gene to characterise the milk microbiome of the Churra breed. A total of 212 samples were collected from two Churra dairy farms with a different management system. The core milk microbiota in Churra ewes includes lesser genera (only two taxa: Staphylococcus and Escherichia/Shigella) than studies reported in other dairy species or even in a previous study in Assaf sheep milk. We found that diversity values in the two flocks of Churra breed were lower than the diversity of the milk microbiota in Assaf. The non-metric multidimensional scaling (NMDS) ordination using Bray-Curtis distance separates samples based on their microbiota composition. The information reported here might be used to understand the complex issue of milk microbiota composition.

15.
Genes (Basel) ; 11(7)2020 06 27.
Article in English | MEDLINE | ID: mdl-32605032

ABSTRACT

Most of the milk produced by sheep is used for the production of high-quality cheese. Consequently, traits related to milk coagulation properties and cheese yield are economically important to the Spanish dairy industry. The present study aims to identify candidate genes and their regulators related to 14 milk and cheese-making traits and to develop a low-density panel of markers that could be used to predict an individual's genetic potential for cheese-making efficiency. In this study, we performed a combination of the classical genome-wide association study (GWAS) with a stepwise regression method and a pleiotropy analysis to determine the best combination of the variants located within the confidence intervals of the potential candidate genes that may explain the greatest genetic variance for milk and cheese-making traits. Two gene networks related to milk and cheese-making traits were created using the genomic relationship matrices built through a stepwise multiple regression approach. Several co-associated genes in these networks are involved in biological processes previously found to be associated with milk synthesis and cheese-making efficiency. The methodology applied in this study enabled the selection of a co-association network comprised of 374 variants located in the surrounding of genes showing a potential influence on milk synthesis and cheese-making efficiency.


Subject(s)
Cheese/standards , Gene Regulatory Networks , Genetic Variation , Milk/standards , Quantitative Trait, Heritable , Sheep/genetics , Animals , Female , Linkage Disequilibrium , Quantitative Trait Loci
16.
J Anim Breed Genet ; 137(1): 73-83, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31602717

ABSTRACT

This work aimed to use 16S ribosomal RNA sequencing with the Illumina MiSeq platform to describe the milk microbiota from 50 healthy Assaf ewes. The global observed microbial community for clinically healthy milk samples analysed was complex and showed a vast diversity. The core microbiota of the sheep milk includes five genera: Staphylococcus, Lactobacillus, Corynebacterium, Streptococcus and Escherichia/Shigella. Although there are some differences, some of these genera are common with the microbiota core pattern of milk from other species, especially with dairy cows. The microbial composition of the studied samples, based on the definition of amplicon sequence variants, was analysed through a correlation network. A preliminary analysis by grouping the milk samples based on their somatic cell count (SCC), which is considered an indicator of subclinical mastitis (SM), showed certain differences for the core of the samples identified as SM. The differences in the microbiota diversity pattern among samples might also suggest that subclinical mastitis would be associated with the significant increase in some genera that are inhabitants of the mammary gland and a remarkable concomitant reduction in the microbial diversity. Additionally, we have also presented here a preliminary analysis to assess the impact of the sheep milk microbiome on SCC, as an indicator of subclinical mastitis. The results here reported provide a first characterization of the sheep milk microbiota and settle the basis for future studies in this field.


Subject(s)
Microbiota/genetics , Milk/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA , Sheep/microbiology , Animals , Cell Count , Classification , Female , Mastitis/microbiology , Phenotype , Sheep/metabolism
17.
Animals (Basel) ; 9(12)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847301

ABSTRACT

This work aimed to estimate genetic parameters for traits related to semen production and quality in Spanish dairy sheep breeds. For that, ejaculates of rams from Assaf, Churra, Latxa Cara Negra, Latxa Cara Rubia, and Manchega breeds were analyzed to measure volume, semen concentration, and motility. Estimates of variance components were obtained with multiple-trait animal models using the average information REML method in the BLUPF90 family of programs. Repeatability estimates for all the traits were also calculated, with values ranging from 0.077 to 0.304 for the motility and the semen concentration traits, respectively. Heritability estimates were of low to moderate magnitude, ranging from 0.014 (motility in Latxa Cara Rubia) to 0.198 (volume in Churra), although the estimates differed among the breeds. The estimated genetic correlations among the three semen traits showed adequate precision only in the MAN breed. The heritability estimates for the semen traits reported in the present paper suggest an adequate response to selection. The practical extension of these results to the other breeds studied here will be secondary to the estimation of more reliable genetic correlations in these breeds.

18.
Sci Rep ; 9(1): 4473, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872673

ABSTRACT

Milk fat depression (MFD) is characterized by a reduction in the content of milk fat, presumably caused by the anti-lipogenic effects of rumen biohydrogenation intermediates, such as trans-10 cis-12 conjugated linoleic acid (CLA). In this study, RNA-Seq technology was used to help elucidate the mammary responses involved in CLA-induced MFD in lactating ewes. To this end, we compared the milk somatic cell transcriptome of ewes suffering from CLA-induced MFD with control ewes (i.e., those without MFD), as well as with ewes fed a diet supplemented with fish oil (FO-MFD) that we previously reported affects the mammary transcriptome. In the differential expression analysis between CLA-MFD and controls, we identified 1,524 differentially expressed genes (DEGs), whereas 653 were detected between CLA- and FO-MFD groups. Although this article focuses on lipid metabolism, CLA affected the expression of many genes related to other biological processes, especially immunity. Among the 55 genes shared by both MFD conditions, some genes linked to fatty acid synthesis, such as ACACA, AACS, ACSS2, or ACSS3, were downregulated. In addition, this study provides a list of candidate genes that are not usually considered in the nutrigenomics of MFD but that may act as key regulators of this syndrome in dairy ewes.


Subject(s)
Gene Expression Profiling/veterinary , Linoleic Acids, Conjugated/adverse effects , Lipid Metabolism/drug effects , Milk/drug effects , Animals , Dietary Supplements/adverse effects , Female , Fish Oils/administration & dosage , Fish Oils/adverse effects , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Linoleic Acids, Conjugated/administration & dosage , Milk/chemistry , Sequence Analysis, RNA/veterinary , Sheep
19.
Vet Res ; 49(1): 39, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703268

ABSTRACT

The present study exploited the RNA-seq technology to analyze the transcriptome of target tissues affected by the Teladorsagia circumcincta infection in two groups of adult ewes showing different statuses against gastrointestinal nematode (GIN) infection with the aim of identifying genes linked to GIN infection resistance in sheep. For this, based on the accumulated faecal egg count of 18 adult Churra ewes subjected to a first experimental infection with T. circumcincta, six ewes were classified as resistant and six others as susceptible to the infection. These 12 animals were dewormed and infected again. After humanitarian sacrifice of these 12 animals at day 7 post-infection, RNA samples were obtained from abomasal mucosa and lymph node tissues and RNA-Seq datasets were generated using an Illumina HiSeq 2000 sequencer. The distribution of the genes based on their expression level were very similar among the two different tissues and conditions. The differential expression analysis performed with two software (DESeq and EdgeR) only identified common differentially expressed genes (DEGs), a total of 106, in the lymph node samples which were considered as GIN-activated. The enrichment analysis performed for these GIN-activated genes identified some pathways related to cytokine-mediated immune response and the PPARG signaling pathway as well as disease terms related to inflammation and gastro-intestinal diseases as enriched. A systematic comparison with the results of previous studies confirmed the involvement of genes such as ITLN2, CLAC1 and galectins, in the immune mechanism activated against T. circumcincta in resistant sheep.


Subject(s)
Abomasum/immunology , Sheep Diseases/immunology , Transcriptome/immunology , Trichostrongyloidea/physiology , Trichostrongyloidiasis/veterinary , Animals , Base Sequence , Female , Gastric Mucosa/immunology , Lymph Nodes/immunology , Ostertagia/physiology , Ostertagiasis/immunology , Ostertagiasis/parasitology , Ostertagiasis/veterinary , Sheep , Sheep Diseases/parasitology , Trichostrongyloidiasis/immunology , Trichostrongyloidiasis/parasitology
20.
Genet Sel Evol ; 49(1): 81, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29115919

ABSTRACT

BACKGROUND: With the aim of identifying selection signals in three Merino sheep lines that are highly specialized for fine wool production (Australian Industry Merino, Australian Merino and Australian Poll Merino) and considering that these lines have been subjected to selection not only for wool traits but also for growth and carcass traits and parasite resistance, we contrasted the OvineSNP50 BeadChip (50 K-chip) pooled genotypes of these Merino lines with the genotypes of a coarse-wool breed, phylogenetically related breed, Spanish Churra dairy sheep. Genome re-sequencing datasets of the two breeds were analyzed to further explore the genetic variation of the regions initially identified as putative selection signals. RESULTS: Based on the 50 K-chip genotypes, we used the overlapping selection signals (SS) identified by four selection sweep mapping analyses (that detect genetic differentiation, reduced heterozygosity and patterns of haplotype diversity) to define 18 convergence candidate regions (CCR), five associated with positive selection in Australian Merino and the remainder indicating positive selection in Churra. Subsequent analysis of whole-genome sequences from 15 Churra and 13 Merino samples identified 142,400 genetic variants (139,745 bi-allelic SNPs and 2655 indels) within the 18 defined CCR. Annotation of 1291 variants that were significantly associated with breed identity between Churra and Merino samples identified 257 intragenic variants that caused 296 functional annotation variants, 275 of which were located across 31 coding genes. Among these, four synonymous and four missense variants (NPR2_His847Arg, NCAPG_Ser585Phe, LCORL_Asp1214Glu and LCORL_Ile1441Leu) were included. CONCLUSIONS: Here, we report the mapping and genetic variation of 18 selection signatures that were identified between Australian Merino and Spanish Churra sheep breeds, which were validated by an additional contrast between Spanish Merino and Churra genotypes. Analysis of whole-genome sequencing datasets allowed us to identify divergent variants that may be viewed as candidates involved in the phenotypic differences for wool, growth and meat production/quality traits between the breeds analyzed. The four missense variants located in the NPR2, NCAPG and LCORL genes may be related to selection sweep regions previously identified and various QTL reported in sheep in relation to growth traits and carcass composition.


Subject(s)
Quantitative Trait Loci , Selection, Genetic , Sheep/genetics , Wool/standards , Animals , Genotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...